Problem 1: Approximate potential

Four particles (one of charge $3 q$, one of charge $5 q$, and two of charge $-4 q$) are placed as shown in the figure below:

Each charge is the same distance L from the origin. Find a simple approximate formula for the potential that is valid at points far from the charges $(r \gg L)$. Express your answer in spherical coordinates. (By 'simple approximate formula', I mean the first non-zero term in the multipole expansion of the potential.)

Problem 2: Quadrupole and Octopole terms for a physical dipole
Two charges, q and $-q$, are separated by a distance d as in the figure below:

The potential at the point \vec{r} is

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{z_{+}}-\frac{q}{z_{-}}\right) . \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\boldsymbol{\varepsilon}_{ \pm}=\sqrt{r^{2}+d^{2} \mp 2 r d \cos \theta} . \tag{2}
\end{equation*}
$$

Taylor expand $1 / v_{+}$and $1 / v_{-}$out to order $(d / r)^{3}$ for $r \gg d$, write out $V(\vec{r})$ to that order, and identify the monopole $\left(r^{-1}\right)$, dipole $\left(r^{-2}\right)$, quadrupole $\left(r^{-3}\right)$, and octopole $\left(r^{-4}\right)$ terms in the potential. Do not do any integrals, just Taylor expand! (Keep in mind that the leading term in $1 / \nu_{ \pm}$for $r \gg d$ is just $1 / r$, so the term of order $(d / r)^{3}$ is the fourth term in the Taylor expansion.)

Problem 3: Force on a point charge due to a pure dipole

A "pure" dipole p is situated at the origin, pointing in the z direction: $\vec{p}=p \hat{z}$. We worked out the potential and electric field for this dipole in class (and in the notes).
(a) What is the force on a point charge q located at $(0,0, d)$ in Cartesian coordinates?
(b) What is the force on q if it is located at $(d, 0,0)$?
(c) How much work does it take to move the charge q from $(0,0, d)$ to $(d, 0,0)$?

Problem 4: Multipole expansion for a line charge

A thin insulating rod, running from $z=-L / 2$ to $z=+L / 2$, carries a line charge $\lambda(z)$. In the following cases, find the leading (first non-zero) term in the multipole expansion of the potential.
(a) $\lambda(z)=\lambda_{0} \cos (\pi z / L)$
(b) $\lambda(z)=\lambda_{0} \sin (2 \pi z / L)$
(c) $\lambda(z)=\lambda_{0} \cos (2 \pi z / L)$

Problem 5: Multipole expansion for three point charges

The figure below shows three point charges, each a distance L from the origin:

Find the approximate electric field at points far from the charges. Express your answer in spherical coordinates, and include the contributions from the first two non-zero terms in the multipole expansion of the potential.

